Table of Integrals

Over Integrals Served.
*Assumes at least one integral is read per visit.

Download Complete Table as: PDF File | Latex

Other Printable Tables
Most of the table on a single page:PDF | Latex
Table of 18 Basic Integrals:PDF | Latex
Logic Formulas: PDF | Latex
Laplace Transforms:PDF | Latex
Differential Equations Study Guide: PDF | Latex
Elementary Statistics:PDF | Latex

Solve any integral on-line with the Wolfram Integrator (External Link)


Basic Forms

(1) $\displaystyle \int x^n dx = \frac{1}{n+1}x^{n+1},\hspace{1ex}n\neq -1$

(2) $\displaystyle \int \frac{1}{x}dx = \ln \vert x\vert$

(3) $\displaystyle \int u dv = uv - \int v du$

(4) $\displaystyle \int \frac{1}{ax+b}dx = \frac{1}{a} \ln \vert ax + b\vert$

Integrals of Rational Functions

(5) $\displaystyle \int \frac{1}{(x+a)^2}dx = -\frac{1}{x+a}$

(6) $\displaystyle \int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n\ne -1$

(7) $\displaystyle \int x(x+a)^n dx = \frac{(x+a)^{n+1} ( (n+1)x-a)}{(n+1)(n+2)}$

(8) $\displaystyle \int \frac{1}{1+x^2}dx = \tan^{-1}x$

(9) $\displaystyle \int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a}$

(10) $\displaystyle \int \frac{x}{a^2+x^2}dx = \frac{1}{2}\ln\vert a^2+x^2\vert$

(11) $\displaystyle \int \frac{x^2}{a^2+x^2}dx = x-a\tan^{-1}\frac{x}{a}$

(12) $\displaystyle \int \frac{x^3}{a^2+x^2}dx = \frac{1}{2}x^2-\frac{1}{2}a^2\ln\vert a^2+x^2\vert$

(13) $\displaystyle \int \frac{1}{ax^2+bx+c}dx = \frac{2}{\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}}$

(14) $\displaystyle \int \frac{1}{(x+a)(x+b)}dx = \frac{1}{b-a}\ln\frac{a+x}{b+x},$    $\displaystyle a\ne b$

(15) $\displaystyle \int \frac{x}{(x+a)^2}dx = \frac{a}{a+x}+\ln \vert a+x\vert$

(16) $\displaystyle \int \frac{x}{ax^2+bx+c}dx = \frac{1}{2a}\ln\vert ax^2+bx+c\vert -\frac{b}{a\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}}$

Integrals with Roots

(17) $\displaystyle \int \sqrt{x-a} dx = \frac{2}{3}(x-a)^{3/2}$

(18) $\displaystyle \int \frac{1}{\sqrt{x\pm a}} dx = 2\sqrt{x\pm a}$

(19) $\displaystyle \int \frac{1}{\sqrt{a-x}} dx = -2\sqrt{a-x}$

(20) $\displaystyle \int x\sqrt{x-a} dx = \left\{ \begin{array}{l} \frac{2 a}{3} \le...
...} (x-a)^{5/2}, \text{ or}  \frac{2}{15}(2a+3x)(x-a)^{3/2} \end{array} \right.$

(21) $\displaystyle \int \sqrt{ax+b} dx = \left(\frac{2b}{3a}+\frac{2x}{3}\right)\sqrt{ax+b}$

(22) $\displaystyle \int (ax+b)^{3/2} dx =\frac{2}{5a}(ax+b)^{5/2}$

(23) $\displaystyle \int \frac{x}{\sqrt{x\pm a} }  dx = \frac{2}{3}(x\mp 2a)\sqrt{x\pm a}$

(24) $\displaystyle \int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x(a-x)} -a\tan^{-1}\frac{\sqrt{x(a-x)}}{x-a}$

(25) $\displaystyle \int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} -a\ln \left [ \sqrt{x} + \sqrt{x+a}\right]$

(26) $\displaystyle \int x \sqrt{ax + b} dx = \frac{2}{15 a^2}(-2b^2+abx + 3 a^2 x^2) \sqrt{ax+b}$

(27) $\displaystyle \int \sqrt{x(ax+b)} dx = \frac{1}{4a^{3/2}}\left[(2ax + b)\sqrt{ax(ax+b)} -b^2 \ln \left\vert a\sqrt{x} + \sqrt{a(ax+b)} \right\vert \right ]$

(28) $\displaystyle \int \sqrt{x^3(ax+b)}  dx =\left [ \frac{b}{12a}- \frac{b^2}{8a^...
...} + \frac{b^3}{8a^{5/2}}\ln \left \vert a\sqrt{x} + \sqrt{a(ax+b)} \right \vert$

(29) $\displaystyle \int\sqrt{x^2 \pm a^2} dx = \frac{1}{2}x\sqrt{x^2\pm a^2} \pm\frac{1}{2}a^2 \ln \left \vert x + \sqrt{x^2\pm a^2} \right \vert$

(30) $\displaystyle \int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2-x^2} +\frac{1}{2}a^2\tan^{-1}\frac{x}{\sqrt{a^2-x^2}}$

(31) $\displaystyle \int x \sqrt{x^2 \pm a^2} dx= \frac{1}{3}\left ( x^2 \pm a^2 \right)^{3/2}$

(32) $\displaystyle \int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left \vert x + \sqrt{x^2 \pm a^2} \right \vert$

(33) $\displaystyle \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\frac{x}{a}$

(34) $\displaystyle \int \frac{x}{\sqrt{x^2\pm a^2}} dx = \sqrt{x^2 \pm a^2}$

(35) $\displaystyle \int \frac{x}{\sqrt{a^2-x^2}} dx = -\sqrt{a^2-x^2}$

(36) $\displaystyle \int \frac{x^2}{\sqrt{x^2 \pm a^2}} dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln \left\vert x + \sqrt{x^2\pm a^2} \right \vert$

(37) $\displaystyle \int \sqrt{a x^2 + b x + c} dx = \frac{b+2ax}{4a}\sqrt{ax^2+bx+c...{4ac-b^2}{8a^{3/2}}\ln \left\vert 2ax + b + 2\sqrt{a(ax^2+bx^+c)}\right \vert$

(38) \begin{displaymath}\begin{split}\int &x \sqrt{a x^2 + bx + c} dx = \frac{1}{48a...
...2ax + 2\sqrt{a}\sqrt{ax^2+bx+c} \right\vert \right) \end{split}\end{displaymath}

(39) $\displaystyle \int\frac{1}{\sqrt{ax^2+bx+c}} dx= \frac{1}{\sqrt{a}}\ln \left\vert 2ax+b + 2 \sqrt{a(ax^2+bx+c)} \right \vert$

(40) $\displaystyle \int \frac{x}{\sqrt{ax^2+bx+c}} dx= \frac{1}{a}\sqrt{ax^2+bx + c} - \frac{b}{2a^{3/2}}\ln \left\vert 2ax+b + 2 \sqrt{a(ax^2+bx+c)} \right \vert$

(41) $\displaystyle \int\frac{dx}{(a^2+x^2)^{3/2}}=\frac{x}{a^2\sqrt{a^2+x^2}}$

Integrals with Logarithms

(42) $\displaystyle \int \ln ax dx = x \ln ax - x$

(43) $\displaystyle \int x \ln x  dx = \frac{1}{2} x^2 \ln x-\frac{x^2}{4}$

(44) $\displaystyle \int x^2 \ln x  dx = \frac{1}{3} x^3 \ln x-\frac{x^3}{9}$

(45) $\displaystyle \int x^n \ln x dx = x^{n+1}\left( \dfrac{\ln x}{n+1}-\dfrac{1}{(n+1)^2}\right),\hspace{2ex} n\neq -1$

(46) $\displaystyle \int \frac{\ln ax}{x} dx = \frac{1}{2}\left ( \ln ax \right)^2$

(47) $\displaystyle \int \frac{\ln x}{x^2} dx = -\frac{1}{x}-\frac{\ln x}{x}$

(48) $\displaystyle \int \ln (ax + b)  dx = \left ( x + \frac{b}{a} \right) \ln (ax+b) - x , a\ne 0$

(49) $\displaystyle \int \ln ( x^2 + a^2 )\hspace{.5ex} {dx} = x \ln (x^2 + a^2 ) +2a\tan^{-1} \frac{x}{a} - 2x$

(50) $\displaystyle \int \ln ( x^2 - a^2 )\hspace{.5ex} {dx} = x \ln (x^2 - a^2 ) +a\ln \frac{x+a}{x-a} - 2x$

(51) $\displaystyle \int \ln \left ( ax^2 + bx + c\right)  dx = \frac{1}{a}\sqrt{4ac...
...sqrt{4ac-b^2}} -2x + \left( \frac{b}{2a}+x \right )\ln \left (ax^2+bx+c \right)$

(52) $\displaystyle \int x \ln (ax + b) dx = \frac{bx}{2a}-\frac{1}{4}x^2 +\frac{1}{2}\left(x^2-\frac{b^2}{a^2}\right)\ln (ax+b)$

(53) $\displaystyle \int x \ln \left ( a^2 - b^2 x^2 \right ) dx = -\frac{1}{2}x^2+ \frac{1}{2}\left( x^2 - \frac{a^2}{b^2} \right ) \ln \left (a^2 -b^2 x^2 \right)$

(54) $\displaystyle \int (\ln x)^2 dx = 2x - 2x \ln x + x (\ln x)^2$

(55) $\displaystyle \int (\ln x)^3 dx = -6 x+x (\ln x)^3-3 x (\ln x)^2+6 x \ln x$

(56) $\displaystyle \int x (\ln x)^2 dx = \frac{x^2}{4}+\frac{1}{2} x^2 (\ln x)^2-\frac{1}{2} x^2 \ln x$

(57) $\displaystyle \int x^2 (\ln x)^2 dx = \frac{2 x^3}{27}+\frac{1}{3} x^3 (\ln x)^2-\frac{2}{9} x^3 \ln x$

Integrals with Exponentials

(58) $\displaystyle \int e^{ax} dx = \frac{1}{a}e^{ax}$

(59) $\displaystyle \int \sqrt{x} e^{ax} dx = \frac{1}{a}\sqrt{x}e^{ax} +\frac{i\sqrt{\pi}}{2a^{3/2}}$   erf$\displaystyle \left(i\sqrt{ax}\right),$    where erf$\displaystyle (x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt$

(60) $\displaystyle \int x e^x dx = (x-1) e^x$

(61) $\displaystyle \int x e^{ax} dx = \left(\frac{x}{a}-\frac{1}{a^2}\right) e^{ax}$

(62) $\displaystyle \int x^2 e^{x} dx = \left(x^2 - 2x + 2\right) e^{x}$

(63) $\displaystyle \int x^2 e^{ax} dx = \left(\frac{x^2}{a}-\frac{2x}{a^2}+\frac{2}{a^3}\right) e^{ax}$

(64) $\displaystyle \int x^3 e^{x} dx = \left(x^3-3x^2 + 6x - 6\right) e^{x}$

(65) $\displaystyle \int x^n e^{ax} dx = \dfrac{x^n e^{ax}}{a} - \dfrac{n}{a}\int x^{n-1}e^{ax}$   d$\displaystyle x$

(66) $\displaystyle \int x^n e^{ax} dx = \frac{(-1)^n}{a^{n+1}}\Gamma[1+n,-ax],$    where $\displaystyle \Gamma(a,x)=\int_x^{\infty} t^{a-1}e^{-t}$   d$\displaystyle t$

(67) $\displaystyle \int e^{ax^2} dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}}$erf$\displaystyle \left(ix\sqrt{a}\right)$

(68) $\displaystyle \int e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}}$erf$\displaystyle \left(x\sqrt{a}\right)$

(69) $\displaystyle \int x e^{-ax^2} {dx} = -\dfrac{1}{2a}e^{-ax^2}$

(70) $\displaystyle \int x^2 e^{-ax^2} {dx} = \dfrac{1}{4}\sqrt{\dfrac{\pi}{a^3}}$erf$\displaystyle (x\sqrt{a}) -\dfrac{x}{2a}e^{-ax^2}$

Integrals with Trigonometric Functions

(71) $\displaystyle \int \sin ax  dx = -\frac{1}{a} \cos ax$

(72) $\displaystyle \int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax} {4a}$

(73) $\displaystyle \int \sin^3 ax  dx = -\frac{3 \cos ax}{4a} + \frac{\cos 3ax} {12a}$

(74) $\displaystyle \int \sin^n ax  dx = -\frac{1}{a}{\cos ax} \hspace{2mm}{_2F_1}\left[ \frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^2 ax \right]$

(75) $\displaystyle \int \cos ax dx= \frac{1}{a} \sin ax$

(76) $\displaystyle \int \cos^2 ax dx = \frac{x}{2}+\frac{ \sin 2ax}{4a}$

(77) $\displaystyle \int \cos^3 ax dx = \frac{3 \sin ax}{4a}+\frac{ \sin 3ax}{12a}$

(78) $\displaystyle \int \cos^p ax dx = -\frac{1}{a(1+p)}{\cos^{1+p} ax} \times {_2F_1}\left[ \frac{1+p}{2}, \frac{1}{2}, \frac{3+p}{2}, \cos^2 ax \right]$

(79) $\displaystyle \int \cos x \sin x dx = \frac{1}{2}\sin^2 x + c_1 = -\frac{1}{2} \cos^2x + c_2 = -\frac{1}{4} \cos 2x + c_3$

(80) $\displaystyle \int \cos ax \sin bx dx = \frac{\cos[(a-b) x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)} , a\ne b$

(81) $\displaystyle \int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$

(82) $\displaystyle \int \sin^2 x \cos x dx = \frac{1}{3} \sin^3 x$

(83) $\displaystyle \int \cos^2 ax \sin bx dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)}$

(84) $\displaystyle \int \cos^2 ax \sin ax dx = -\frac{1}{3a}\cos^3{ax}$

(85) $\displaystyle \int \sin^2 ax \cos^2 bx dx = \frac{x}{4} -\frac{\sin 2ax}{8a}- \frac{\sin[2(a-b)x]}{16(a-b)} +\frac{\sin 2bx}{8b}- \frac{\sin[2(a+b)x]}{16(a+b)}$

(86) $\displaystyle \int \sin^2 ax \cos^2 ax dx = \frac{x}{8}-\frac{\sin 4ax}{32a}$

(87) $\displaystyle \int \tan ax dx = -\frac{1}{a} \ln \cos ax$

(88) $\displaystyle \int \tan^2 ax dx = -x + \frac{1}{a} \tan ax$

(89) $\displaystyle \int \tan^n ax dx = \frac{\tan^{n+1} ax }{a(1+n)} \times {_2}F_1\left( \frac{n+1}{2}, 1, \frac{n+3}{2}, -\tan^2 ax \right)$

(90) $\displaystyle \int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a}\sec^2 ax$

(91) $\displaystyle \int \sec x  dx = \ln \vert \sec x + \tan x \vert = 2 \tanh^{-1} \left (\tan \frac{x}{2} \right)$

(92) $\displaystyle \int \sec^2 ax dx = \frac{1}{a} \tan ax$

(93) $\displaystyle \int \sec^3 x  {dx} = \frac{1}{2} \sec x \tan x + \frac{1}{2}\ln \vert \sec x + \tan x \vert$

(94) $\displaystyle \int \sec x \tan x dx = \sec x$

(95) $\displaystyle \int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x$

(96) $\displaystyle \int \sec^n x \tan x  dx = \frac{1}{n} \sec^n x , n\ne 0$

(97) $\displaystyle \int \csc x dx = \ln \left \vert \tan \frac{x}{2} \right\vert = \ln \vert \csc x - \cot x\vert + C$

(98) $\displaystyle \int \csc^2 ax dx = -\frac{1}{a} \cot ax$

(99) $\displaystyle \int \csc^3 x dx = -\frac{1}{2}\cot x \csc x + \frac{1}{2} \ln \vert \csc x - \cot x \vert$

(100) $\displaystyle \int \csc^nx \cot x dx = -\frac{1}{n}\csc^n x, n\ne 0$

(101) $\displaystyle \int \sec x \csc x  dx = \ln \vert \tan x \vert$

Products of Trigonometric Functions and Monomials

(102) $\displaystyle \int x \cos x  dx = \cos x + x \sin x$

(103) $\displaystyle \int x \cos ax  dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$

(104) $\displaystyle \int x^2 \cos x  dx = 2 x \cos x + \left ( x^2 - 2 \right ) \sin x$

(105) $\displaystyle \int x^2 \cos ax  dx = \frac{2 x \cos ax }{a^2} + \frac{ a^2 x^2 - 2 }{a^3} \sin ax$

(106) $\displaystyle \int x^n \cos x dx = -\frac{1}{2}(i)^{n+1}\left [ \Gamma(n+1, -ix) + (-1)^n \Gamma(n+1, ix)\right]$

(107) $\displaystyle \int x^n \cos ax  dx = \frac{1}{2}(ia)^{1-n}\left [ (-1)^n \Gamma(n+1, -iax) -\Gamma(n+1, ixa)\right]$

(108) $\displaystyle \int x \sin x dx = -x \cos x + \sin x$

(109) $\displaystyle \int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$

(110) $\displaystyle \int x^2 \sin x dx = \left(2-x^2\right) \cos x + 2 x \sin x$

(111) $\displaystyle \int x^2 \sin ax dx =\frac{2-a^2x^2}{a^3}\cos ax +\frac{ 2 x \sin ax}{a^2}$

(112) $\displaystyle \int x^n \sin x  dx = -\frac{1}{2}(i)^n\left[ \Gamma(n+1, -ix) - (-1)^n\Gamma(n+1, -ix)\right]$

(113) $\displaystyle \int x \cos^2 x  dx = \frac{x^2}{4}+\frac{1}{8}\cos 2x + \frac{1}{4} x \sin 2x$

(114) $\displaystyle \int x \sin^2 x  dx = \frac{x^2}{4}-\frac{1}{8}\cos 2x - \frac{1}{4} x \sin 2x$

(115) $\displaystyle \int x \tan^2 x  dx = -\frac{x^2}{2} + \ln \cos x + x \tan x$

(116) $\displaystyle \int x \sec^2 x  dx = \ln \cos x + x \tan x$

Products of Trigonometric Functions and Exponentials

(117) $\displaystyle \int e^x \sin x  dx = \frac{1}{2}e^x (\sin x - \cos x)$

(118) $\displaystyle \int e^{bx} \sin ax dx = \frac{1}{a^2+b^2}e^{bx} (b\sin ax - a\cos ax)$

(119) $\displaystyle \int e^x \cos x dx = \frac{1}{2}e^x (\sin x + \cos x)$

(120) $\displaystyle \int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} ( a \sin ax + b \cos ax )$

(121) $\displaystyle \int x e^x \sin x dx = \frac{1}{2}e^x (\cos x - x \cos x + x \sin x)$

(122) $\displaystyle \int x e^x \cos x dx = \frac{1}{2}e^x (x \cos x - \sin x + x \sin x)$

Integrals of Hyperbolic Functions

(123) $\displaystyle \int \cosh ax dx =\frac{1}{a} \sinh ax$

(124) $\displaystyle \int e^{ax} \cosh bx  dx = \begin{cases}\displaystyle{\frac{e^{a...
...& a\ne b  \displaystyle{\frac{e^{2ax}}{4a} + \frac{x}{2}} & a = b \end{cases}$

(125) $\displaystyle \int \sinh ax dx = \frac{1}{a} \cosh ax$

(126) $\displaystyle \int e^{ax} \sinh bx  dx = \begin{cases}\displaystyle{\frac{e^{a...
...& a\ne b  \displaystyle{\frac{e^{2ax}}{4a} - \frac{x}{2}} & a = b \end{cases}$

(127) $\displaystyle \int \tanh ax\hspace{1.5pt} dx =\frac{1}{a} \ln \cosh ax$

(128) $\displaystyle \int e^{ax} \tanh bx dx = \begin{cases}\displaystyle{ \frac{ e^{... b  \displaystyle{\frac{e^{ax}-2\tan^{-1}[e^{ax}]}{a} } & a = b \end{cases}$

(129) $\displaystyle \int \cos ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[ a \sin ax \cosh bx + b \cos ax \sinh bx \right]$

(130) $\displaystyle \int \cos ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[ b \cos ax \cosh bx + a \sin ax \sinh bx \right]$

(131) $\displaystyle \int \sin ax \cosh bx  dx = \frac{1}{a^2 + b^2} \left[ -a \cos ax \cosh bx + b \sin ax \sinh bx \right]$

(132) $\displaystyle \int \sin ax \sinh bx  dx = \frac{1}{a^2 + b^2} \left[ b \cosh bx \sin ax - a \cos ax \sinh bx \right]$

(133) $\displaystyle \int \sinh ax \cosh ax dx= \frac{1}{4a}\left[ -2ax + \sinh 2ax \right]$

(134) $\displaystyle \int \sinh ax \cosh bx  dx = \frac{1}{b^2-a^2}\left[ b \cosh bx \sinh ax - a \cosh ax \sinh bx \right]$

If you find an error

If you find an error on this web page or would like to suggest a modification, send an email to bruce.e.shapiro at

Please note that the equation numbering (and ordering) may be different on the printed and web version, and between the current and earlier version of this web page. When making an error report please indicate whether you are referring to the on-line or pdf version of the equation.

Usage and attribution

Creative Commons License
Except where otherwise stated, the documents posted on are licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. This includes the web page itself and all pdf and latex files posted on the web site and its derivative pages. Attribution to the web site will satisfy the attribution terms of this license.

©2013 B.E.Shapiro. This material is posted as is without warranty. No claims are made about the accuracy, correctness or suitability of this material for any purpose. While a reasonable effort was made to verify the accuracy of these formulas some typographical errors may have occurred. You should verify any formulas you use before using or publishing any derivative results.

The actual integral formulas themselves exist in the public domain and may not be copyrighted.


The author is not in any way affiliated with Wolfram Research, Mathematica, or the Wolfram Integrater. I've just posted the link at the top of this page because I think their web site is really cool!

Thanks to the following for pointing out corrections, typos, or suggesting new formulas: LS Rigo (19); Stephen Gilmore (20); Bruce Weems (23); Stephen Russ (36); Justin Winokur (37), (41); Larry Morris and Tom Gatliffe (38); James Duley (40); Daniel Ajoy (59); Johannes Ebke (66); Jim Swift (65),(66), (67), (68); Kregg Quarles (69),(70); Vedran (Veky) Čačić (79); Peter Kloeppel (93); Phillipe (Xul) (112); Nicole Ritzert and Andrea Bajo (118); Jose Antonio Alvarez Loyo Yates (127); Corné de Witt (128).

And I am honored to be considered amongst the following esteemed company:

Who needs a math reference when you've got MathWorld or

[Peter Maurer, Review-by-Few or Review-by-Many?,]

Web Site Statistics

There have been visitors to since 2004.

The clustrmap is periodically (and automatically) archived and its counters reset, so the total is smaller:

About this document ...

This document was generated using the LaTeX2HTML translator Version 2008 (1.71)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html integral-table -split 0 -toc_stars -no_navigation

The translation was initiated by Abrahamo Lincolni on 2013-08-25

Abrahamo Lincolni 2013-08-25